
1 | P a g e

SUBMITTED TO: SUBMITTED BY:

DR. SANTOSH SINGH RATHORE PRAKHAR GUPTA (101610066)

CSED, TU PRATEEK CHHIKARA (101603247)

 GROUP-G6

UCS310:
DATABASE

MANAGEMENT SYSTEM

2 | P a g e

3 | P a g e

INDEX

S.No. Topic Page no

1 Acknowledgement 4

2 Introduction 5

3 Tables Used 8

4 Functional Dependencies 11

5 Normalization 12

6 Insertion 20

7 Deletion 26

8 Cursors 32

9 Triggers 38

4 | P a g e

ACKNOWLEDGEMENT

We have taken efforts in this project. However, it would
not have been possible without the kind support and
help of many individuals and teachers. We would like to
extend our sincere thanks to all of them.

We are highly indebted to Dr. Santosh Singh Rathore for
his guidance and constant supervision as well as for
providing necessary information regarding the project &
also for their support in completing the project.

We would like to express our gratitude towards our
parents for their kind co-operation and encouragement
which helped us in completion of this project.

Our thanks and appreciations also go to our colleague in
developing the project and people who have willingly
helped us out with their abilities.

5 | P a g e

INTRODUCTION:

The music database is designed to store details of a music collection, including the
albums in the collection, the artists who made them, the tracks on the albums.

The Music Database

The music database stores details of a personal music library, and could be used to
manage your MP3, CD, or vinyl collection. Because this database is for a personal
collection, it’s relatively simple and stores only the relationships between artists,
albums, and tracks. It ignores the requirements of many music genres, making it
most useful for storing popular music and less useful for storing jazz or classical
music.

We first draw up a clear list of requirements for our database:

o The collection consists of albums.
o An album is made by exactly one artist.
o An artist makes one or more albums.
o An album contains one or more tracks
o Artists, albums, and tracks each have a name.
o Each track is on exactly one album.
o Each track has a time length, measured in minutes and seconds.

There’s no requirement to capture composers, group members or sidemen,
recording date or location, the source media, or any other details of artists, albums,
or tracks.

The ER diagram derived from our requirements is shown in below figure. The
attributes are straightforward: artists, albums, and tracks have names, as well as
identifiers to uniquely identify each entity.

6 | P a g e

.

7 | P a g e

What it doesn’t do….?

We’ve kept the music database simple because adding extra features doesn’t help
you learn anything new, it just makes the explanations longer. If you wanted to use
the music database in practice, then you might consider adding the following
features:

1. Support for compilations or various-artists albums, where each track may be
by a different artist and may then have its own associated album-like details
such as a recording date and time. Under this model, the album would be a
strong entity, with many-to-many relationships between artists and albums.

2. Playlists, a user-controlled collection of tracks. For example, you might create
a playlist of your favorite tracks from an artist.

3. Source details, such as when you bought an album, what media it came on,
how much you paid, and so on.

4. Album details, such as when and where it was recorded, the producer and
label, the band members or sidemen who played on the album, and even its
artwork.

5. Smarter track management, such as modeling that allows the same track to
appear on many albums.

8 | P a g e

TABLES USED:

ARTIST:
COLUMN_NAME DATA_TYPE CONSTRAINTS

ARTIST_ID NUMBER(3) PRIMARY KEY

ARTIST_NAME VARCHAR2(30)

COUNTRY VARCHAR2(10)

DOB DATE

TRACK:
COLUMN_NAME DATA_TYPE CONSTRAINTS

TRACK_NAME VARCHAR2(10)

TRACK_ID NUMBER(3) PRIMARY KEY

RATINGS_T NUMBER(1) CHECK

LYRICS CLOB

GENRE VARCHAR(30)

TRACK_RELEASE_DATE DATE

ALBUM_ID NUMBER(3) FOREIGN KEY

MINUTES NUMBER(2) CHECK

SECONDS NUMBER(2) CHECK

9 | P a g e

ALBUM:

COLUMN_NAME DATA_TYPE CONSTRAINTS

ALBUM_NAME VARCHAR2(30)

ALBUM_ID NUMBER(3) PRIMARY KEY

RATINGS_A NUMBER(1) CHECK

ALBUM_RELEASE_DATE DATE

AWARD:
COLUMN_NAME DATA_TYPE CONSTRAINTS

AWARD_ID NUMBER(3) PRIMARY KEY

AWARD_NAME VARCHAR2(30)

RECEIVED_BY:
COLUMN_NAME DATA_TYPE CONSTRAINTS

ARTIST_ID NUMBER(3) FOREIGN KEY

AWARD_ID NUMBER(3) FOREIGN KEY

TRACK_ID NUMBER(3) FOREIGN KEY

YEAR NUMBER(4)

10 | P a g e

CREATES_A:
COLUMN_NAME DATA_TYPE CONSTRAINTS

ARTIST_ID NUMBER(3) FOREIGN KEY

ALBUM_ID NUMBER(3) FOREIGN KEY

CREATES_T:
COLUMN_NAME DATA_TYPE CONSTRAINTS

ARTIST_ID NUMBER(3) FOREIGN KEY

TRACK_ID NUMBER(3) FOREIGN KEY

11 | P a g e

Functional dependency:

Functional dependency (FD) is a set of constraints between two attributes
in a relation. Functional dependency says that if two tuples have same
values for attributes A1, A2..., An, then those two tuples must have to
have same values for attributes B1, B2, ..., Bn.

Functional dependency is represented by an arrow sign (→) that is, X→Y,
where X functionally determines Y. The left-hand side attributes determine
the values of attributes on the right-hand side.

12 | P a g e

NORMALIZATION:

Normalization is a process of organizing the data in database to avoid data
redundancy, insertion anomaly, update anomaly & deletion anomaly.

First normal form (1NF)

As per the rule of first normal form, an attribute (column) of a table cannot hold
multiple values. It should hold only atomic values.

Second normal form (2NF)

A table is said to be in 2NF if both the following conditions hold:

 Table is in 1NF (First normal form)
 No non-prime attribute is dependent on the proper subset of any candidate key

of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

 Table must be in 2NF
 Transitive functional dependency of non-prime attribute on any super key

should be removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words, 3NF can be explained like this: A table is in 3NF if it is in 2NF and for
each functional dependency X-> Y at least one of the following conditions hold:

 X is a super key of table
 Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

13 | P a g e

ARTIST:

Functional Dependency:

ARTIST_ID  ARTIST_NAME, COUNTRY, DOB

Candidate Keys: ARTIST_ID
Non-prime attributes: ARTIST_NAME, COUNTRY, DOB

1NF: This table is in first normal form because all the attributes in the relation
have atomic domains.

2NF: This table is in second normal form because there is no partial
dependency present.

3NF: This table is in third normal form because there is no transitive
dependency.

14 | P a g e

TRACK:

Functional Dependency:

TRACK_ID  TRACK_NAME, RATING_T, TRACK_RELEASE_DATE, ALBUM_ID,
LYRICS, GENRE, MINUTES, SECONDS

Candidate Keys: TRACK_ID
Non-prime attributes: TRACK_NAME, RATING_T, TRACK_RELEASE_DATE,
ALBUM_ID, LYRICS, GENRE, MINUTES, SECONDS

1NF: This table is in first normal form because all the attributes in the relation
have atomic domains.

2NF: This table is in second normal form because there is no partial
dependency present.

3NF: This table is in third normal form because there is no transitive
dependency.

15 | P a g e

ALBUM:

Functional Dependency:

ALBUM_ID  ALBUM_NAME, RATING_A, ALBUM_RELEASE_DATE

Candidate Keys: ALBUM_ID
Non-prime attributes: ALBUM_NAME, RATING_A, ALBUM_RELEASE_DATE

1NF: This table is in first normal form because all the attributes in the relation
have atomic domains.

2NF: This table is in second normal form because there is no partial
dependency present.

3NF: This table is in third normal form because there is no transitive
dependency.

16 | P a g e

AWARD:

Functional Dependency:

AWARD_ID  AWARD_NAME

Candidate Keys: AWARD_ID
Non-prime attributes: AWARD_NAME

1NF: This table is in first normal form because all the attributes in the relation
have atomic domains.

2NF: This table is in second normal form because there is no partial
dependency present.

3NF: This table is in third normal form because there is no transitive
dependency.

17 | P a g e

RECEIVED BY:

Functional Dependency:

AWARD_ID, ARTIST_ID, TRACK_ID  YEAR

Candidate Keys: AWARD_ID, ARTIST_ID, TRACK_ID
Non-prime attributes: YEAR

1NF: This table is in first normal form because all the attributes in the relation
have atomic domains.

2NF: This table is in second normal form because there is no partial
dependency present.

3NF: This table is in third normal form because there is no transitive
dependency.

18 | P a g e

CREATES_A:

Functional Dependency:

 ARTIST_ID, ALBUM_ID  NONE

Candidate Keys: ARTIST_ID, ALBUM_ID
Non-prime attributes: NONE

1NF: This table is in first normal form because all the attributes in the relation
have atomic domains.

2NF: This table is in second normal form because there is no partial
dependency present.

3NF: This table is in third normal form because there is no transitive
dependency.

19 | P a g e

CREATES_T:

Functional Dependency:

 ARTIST_ID, TRACK_ID  NONE

Candidate Keys: ARTIST_ID, TRACK_ID
Non-prime attributes: NONE

1NF: This table is in first normal form because all the attributes in the relation
have atomic domains.

2NF: This table is in second normal form because there is no partial
dependency present.

3NF: This table is in third normal form because there is no transitive
dependency.

20 | P a g e

INSERTION:

DECLARE

PROCEDURE INSERT_ARTIST (A_ID NUMBER,

 A_NAME VARCHAR2

, A_COUNTRY VARCHAR2

, A_DOB DATE) AS

BEGIN

INSERT INTO ARTIST VALUES(A_ID, A_NAME,A_COUNTRY,A_DOB);

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

 DBMS_OUTPUT.PUT_LINE ('YOU ARE INSERTING DUPLICATE DETAILS FOR
ARTIST');

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('SQLERRM');

END;

BEGIN

INSERT_ARTIST (: A_ID,:A_NAME,:A_COUNTRY,:A_DOB);

DBMS_OUTPUT.PUT_LINE ('NUMBER OF ARTIST ADDED ' ||
SQL%ROWCOUNT);

END;

/

DECLARE

PROCEDURE INSERT_ALBUM (A_ID NUMBER,

 A_NAME VARCHAR2

, A_RATING NUMBER

, A_RELEASE DATE) AS

BEGIN

INSERT INTO ALBUM VALUES(A_ID, A_NAME,A_RATING,A_RELEASE);

21 | P a g e

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

 DBMS_OUTPUT.PUT_LINE ('YOU ARE INSERTING DUPLICATE DETAILS FOR
ALBUM');

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE ('AN ERROR HAS OCCURED WHILE
INSERTING!!');

END;

BEGIN

INSERT_ALBUM (: A_ID,:A_NAME,:A_RATING,:A_RELEASE);

DBMS_OUTPUT.PUT_LINE ('NUMBER OF ALBUM ADDED ' ||
SQL%ROWCOUNT);

END;

/

DECLARE

PROCEDURE INSERT_TRACK (

 T_NAME VARCHAR2

, T_ID NUMBER

, T_RATING NUMBER

, T_LYRICS CLOB

, T_GENRE VARCHAR2

, T_RELEASE DATE

, A_ID NUMBER

, T_MIN NUMBER

, T_SEC NUMBER) AS

BEGIN

INSERT INTO TRACK
VALUES(T_NAME,T_ID,T_RATING,T_LYRICS,T_GENRE,T_RELEASE,A_ID,T_MI
N,T_SEC);

22 | P a g e

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

 DBMS_OUTPUT.PUT_LINE('YOU ARE INSERTING DUPLICATE DETAILS FOR
TRACK');

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

BEGIN

INSERT_TRACK (:
TRACK_NAME,:TRACK_ID,:TRACK_RATING,:TRACK_LYRICS,:TRACK_GENRE,:
TRACK_RELEASE,:ALBUM_ID,:MINUTES,:SECONDS);

DBMS_OUTPUT.PUT_LINE ('NUMBER OF TRACK ADDED ' ||
SQL%ROWCOUNT);

END;

/

DECLARE

PROCEDURE INSERT_AWARD (

 A_ID NUMBER

, A_NAME VARCHAR2

) AS

BEGIN

INSERT INTO AWARD VALUES (A_ID, A_NAME);

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

 DBMS_OUTPUT.PUT_LINE ('YOU ARE INSERTING DUPLICATE DETAILS FOR
AWARD');

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE ('AN ERROR HAS OCCURED WHILE
INSERTING!!');

END;

BEGIN

23 | P a g e

INSERT_AWARD (: AWARD_ID,:AWARD_NAME);

DBMS_OUTPUT.PUT_LINE ('NUMBER OF AWARDS ADDED ' ||
SQL%ROWCOUNT);

END;

/

DECLARE

PROCEDURE INSERT_RECEIVED_BY (

 A_ID NUMBER

, AW_ID NUMBER

, T_ID NUMBER

, YEAR NUMBER) AS

BEGIN

INSERT INTO RECEIVED_BY VALUES (A_ID, AW_ID,T_ID,YEAR);

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

 DBMS_OUTPUT.PUT_LINE ('YOU ARE INSERTING DUPLICATE DETAILS.');

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('SQLERRM');

END;

BEGIN

INSERT_RECEIVED_BY (: ARTIST_ID, AWARD_ID,:TRACK_ID,:YEAR);

DBMS_OUTPUT.PUT_LINE ('NUMBER OF ENTRIES ADDED ' ||
SQL%ROWCOUNT);

END;

/

24 | P a g e

DECLARE

PROCEDURE INSERT_CREATES_A (

 A_ID NUMBER

, AL_ID NUMBER

) AS

BEGIN

INSERT INTO CREATES_A VALUES (A_ID, AL_ID);

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

 DBMS_OUTPUT.PUT_LINE ('YOU ARE INSERTING DUPLICATE DETAILS.');

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('SQLERRM');

END;

BEGIN

INSERT_CREATES_A (: ARTIST_ID,:ALBUM_ID);

DBMS_OUTPUT.PUT_LINE ('NUMBER OF ENTRIES ADDED ' ||
SQL%ROWCOUNT);

END;

/

DECLARE

PROCEDURE INSERT_CREATES_T (

 A_ID NUMBER

, T_ID NUMBER

) AS

BEGIN

INSERT INTO CREATES_T VALUES(A_ID,T_ID);

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

25 | P a g e

 DBMS_OUTPUT.PUT_LINE ('YOU ARE INSERTING DUPLICATE DETAILS.');

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

BEGIN

INSERT_CREATES_T(:ARTIST_ID,:T_ID);

DBMS_OUTPUT.PUT_LINE('NUMBER OF ENTRIES ADDED ' ||
SQL%ROWCOUNT);

END;

/

26 | P a g e

DELETION:

DECLARE

ERROR_ON_DELETE EXCEPTION;

 PROCEDURE DELETE_DATA (

 A NUMBER

)

 AS

 BEGIN

 DELETE FROM ARTIST WHERE ARTIST_ID=A;

 DBMS_OUTPUT.PUT_LINE('NO OF ENTRIES DELETED:
'||SQL%ROWCOUNT);

IF

SQL%ROWCOUNT=0 THEN

RAISE ERROR_ON_DELETE;

END IF;

EXCEPTION

WHEN ERROR_ON_DELETE THEN

 DBMS_OUTPUT.PUT_LINE(‘THIS RECORD IS NOT AVAILABLE IN
DATABASE’);

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(‘THAT’’S AN ERROR’);

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 END;

BEGIN

 DELETE_DATA(:ARTIST_ID);

END;

/

27 | P a g e

DECLARE

ERROR_ON_DELETE EXCEPTION;

 PROCEDURE DELETE_DATA(

 A NUMBER

)

 AS

 BEGIN

 DELETE FROM ALBUM WHERE ALBUM_ID=A;

 DBMS_OUTPUT.PUT_LINE('NO OF ENTRIES DELETED:
'||SQL%ROWCOUNT);

IF

SQL%ROWCOUNT=0 THEN

RAISE ERROR_ON_DELETE;

END IF;

EXCEPTION

WHEN ERROR_ON_DELETE THEN

 DBMS_OUTPUT.PUT_LINE(‘THIS RECORD IS NOT AVAILABLE IN
DATABASE’);

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(‘THAT’’S AN ERROR’);

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 END;

BEGIN

 DELETE_DATA(:ALBUM_ID);

END;

/

DECLARE

ERROR_ON_DELETE EXCEPTION;

28 | P a g e

 PROCEDURE DELETE_DATA(

 A NUMBER

)

 AS

 BEGIN

 DELETE FROM TRACK WHERE TRACK_ID=A;

 DBMS_OUTPUT.PUT_LINE('NO OF ENTRIES DELETED:
'||SQL%ROWCOUNT);

IF

SQL%ROWCOUNT=0 THEN

RAISE ERROR_ON_DELETE;

END IF;

EXCEPTION

WHEN ERROR_ON_DELETE THEN

 DBMS_OUTPUT.PUT_LINE(‘THIS RECORD IS NOT AVAILABLE IN
DATABASE’);

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(‘THAT’’S AN ERROR’);

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 END;

BEGIN

 DELETE_DATA(:TRACK_ID);

END;

/

DECLARE

ERROR_ON_DELETE EXCEPTION;

 PROCEDURE DELETE_DATA(

 A NUMBER

 , B NUMBER

29 | P a g e

 , C NUMBER

)

 AS

 BEGIN

 DELETE FROM RECEIVED_BY WHERE ARTIST_ID=A AND AWARD_ID=B
AND TRACK_ID=C;

 DBMS_OUTPUT.PUT_LINE('NO OF ENTRIES DELETED:
'||SQL%ROWCOUNT);

IF

SQL%ROWCOUNT=0 THEN

RAISE ERROR_ON_DELETE;

END IF;

EXCEPTION

WHEN ERROR_ON_DELETE THEN

 DBMS_OUTPUT.PUT_LINE(‘THIS RECORD IS NOT AVAILABLE IN
DATABASE’);

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(‘THAT’’S AN ERROR’);

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 END;

BEGIN

 DELETE_DATA(:ARTIST_ID,:AWARD_ID,:TRACK_ID);

END;

/

DECLARE

ERROR_ON_DELETE EXCEPTION;

 PROCEDURE DELETE_DATA(

 A NUMBER

 , B NUMBER

30 | P a g e

)

 AS

 BEGIN

 DELETE FROM CREATES_A WHERE ARTIST_ID=A AND ALBUM_ID=B;

 DBMS_OUTPUT.PUT_LINE('NO OF ENTRIES DELETED:
'||SQL%ROWCOUNT);

IF

SQL%ROWCOUNT=0 THEN

RAISE ERROR_ON_DELETE;

END IF;

EXCEPTION

WHEN ERROR_ON_DELETE THEN

 DBMS_OUTPUT.PUT_LINE(‘THIS RECORD IS NOT AVAILABLE IN
DATABASE’);

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(‘THAT’’S AN ERROR’);

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 END;

BEGIN

 DELETE_DATA(:ARTIST_ID,:ALBUM_ID);

END;

/

DECLARE

ERROR_ON_DELETE EXCEPTION;

 PROCEDURE DELETE_DATA(

 A NUMBER

 , B NUMBER

)

31 | P a g e

 AS

 BEGIN

 DELETE FROM CREATES_T WHERE ARTIST_ID=A AND TRACK_ID=B;

 DBMS_OUTPUT.PUT_LINE('NO OF ENTRIES DELETED:
'||SQL%ROWCOUNT);

IF

SQL%ROWCOUNT=0 THEN

RAISE ERROR_ON_DELETE;

END IF;

EXCEPTION

WHEN ERROR_ON_DELETE THEN

 DBMS_OUTPUT.PUT_LINE(‘THIS RECORD IS NOT AVAILABLE IN
DATABASE’);

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(‘THAT’’S AN ERROR’);

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 END;

BEGIN

 DELETE_DATA(:ARTIST_ID,:TRACK_ID);

END;

/

32 | P a g e

CURSOR

DECLARE

NOT_FOUND EXCEPTION;

FOUND NUMBER: =0;

PROCEDURE retrive(id number) as

cursor C1 is select * from TRACK where TRACK_ID = id;

REC C1%rowtype;

begin

open C1;

loop

fetch C1 into REC;

exit when C1%notfound;

FOUND:=1;

dbms_output.put_line('TRACK NAME: ' || REC.TRACK_NAME ||' RATING:
'||REC.RATING_T ||' DURATION: '||REC.MINUTES||':'||REC.SECONDS);

dbms_output.put_line('RELEASE DATE: ' || REC.TRACK_RELEASE_DATE||'
GENRE: '||REC.GENRE);

dbms_output.put_line('LYRICS: ');

dbms_output.put_line(REC.LYRICS);

end loop;

close C1;

IF FOUND <> 1 THEN

RAISE NOT_FOUND;

END IF;

EXCEPTION

WHEN NOT_FOUND THEN dbms_output.put_line('NO RECORDS FOUND FOR
THIS TRACK ');

WHEN OTHERS THEN

dbms_output.put_line(SQLERRM);

33 | P a g e

end;

begin

retrive(:TRACK_ID);

END;

/

DECLARE

NOT_FOUND EXCEPTION;

FOUND NUMBER: =0;

 PROCEDURE retrive(id number) as

 cursor C1 is select * from CREATES_A where ARTIST_ID = id;

 REC C1%rowtype;

 ALB ALBUM%ROWTYPE;

 A_ID ARTIST.ARTIST_ID%TYPE;

 begin

 SELECT DISTINCT ARTIST_ID INTO A_ID FROM RECEIVED_BY WHERE
ARTIST_ID=id;

 dbms_output.put_line('ARTIST WHOSE ID IS '|| A_ID ||' HAS CREATED
FOLLOWING ALBUMS');

 open C1;

 loop

 fetch C1 into REC;

 exit when C1%notfound;

FOUND:=1;

 SELECT * INTO ALB FROM ALBUM WHERE ALBUM_ID=REC.ALBUM_ID;

34 | P a g e

 dbms_output.put_line('NAME: '||ALB.ALBUM_NAME||' RATING:
'||ALB.RATING_A||' RELEASE DATE: '||ALB.ALBUM_RELEASE_DATE);

 end loop;

 close C1;

IF FOUND <> 1 THEN

RAISE NOT_FOUND;

END IF;

EXCEPTION

WHEN NOT_FOUND THEN dbms_output.put_line('NO RECORDS FOUND FOR
THIS ARTIST ');

WHEN OTHERS THEN

dbms_output.put_line(SQLERRM);

 end;

begin

 retrive(:ARTIST_ID);

END;

/

DECLARE

NOT_FOUND EXCEPTION;

FOUND NUMBER: =0;

 PROCEDURE retrive(id number) as

 cursor C1 is select * from CREATES_T where ARTIST_ID = id;

 REC C1%rowtype;

 TRK TRACK%ROWTYPE;

 A_ID ARTIST.ARTIST_ID%TYPE;

 begin

35 | P a g e

 SELECT DISTINCT ARTIST_ID INTO A_ID FROM RECEIVED_BY WHERE
ARTIST_ID=id;

 dbms_output.put_line('ARTIST WHOSE ID IS '|| A_ID ||' HAS CREATED
FOLLOWING TRACKS');

 open C1;

 loop

 fetch C1 into REC;

 exit when C1%notfound;

FOUND: =1;

 SELECT * INTO TRK FROM TRACK WHERE TRACK_ID=REC.TRACK_ID;

 dbms_output.put_line ('NAME: '||TRK.TRACK_NAME||' RATING:
'||TRK.RATING_T||' TRACK DATE: '||TRK.TRACK_ID);

 end loop;

 close C1;

IF FOUND <> 1 THEN

RAISE NOT_FOUND;

END IF;

EXCEPTION

WHEN NOT_FOUND THEN dbms_output.put_line('NO RECORDS FOUND FOR
THIS ARTIST ');

WHEN OTHERS THEN

dbms_output.put_line(SQLERRM);

 end;

begin

 retrive(:ARTIST_ID);

END;

36 | P a g e

DECLARE
 NOT_FOUND EXCEPTION;
 FOUND NUMBER: =0;
 PROCEDURE retrive(id number) as
 cursor C1 is select * from RECEIVED_BY where ARTIST_ID = id;
 REC C1%rowtype;
 AWD AWARD%ROWTYPE;
 A_ID ARTIST.ARTIST_ID%TYPE;
TRK TRACK.TRACK_NAME%TYPE;
 begin
 SELECT DISTINCT ARTIST_ID INTO A_ID FROM RECEIVED_BY WHERE
ARTIST_ID=id;
 dbms_output.put_line('ARTIST WHOSE ID IS '|| A_ID ||' HAS WON FOLLOWING
AWARDS');
 open C1;

 loop
 fetch C1 into REC;
 exit when C1%notfound;
 FOUND :=1;
 SELECT * INTO AWD FROM AWARD WHERE AWARD_ID=REC.AWARD_ID;
SELECT TRACK_NAME INTO TRK FROM TRACK WHERE
TRACK_ID=REC.TRACK_ID;
 dbms_output.put_line('NAME: '||AWD.AWARD_NAME||' FOR TRACK:
'||TRK||' YEAR: '||REC.YEAR);

 end loop;
 close C1;
 IF FOUND <> 1 THEN
 RAISE NOT_FOUND;
 END IF;
 EXCEPTION
 WHEN NOT_FOUND THEN
 dbms_output.put_line('NO RECORDS FOUND FOR THIS ARTIST');
 WHEN OTHERS THEN
 dbms_output.put_line(SQLERRM);
 end;

begin
 retrive(:ARTIST_ID);
END;
/

37 | P a g e

AGE CALCULATION

DECLARE

 AGE NUMBER;

 DOB DATE;

 FUNCTION AGE_CALC(DOB IN DATE) RETURN NUMBER IS

 begin

 AGE:=(SYSDATE-DOB)/365;

 RETURN(AGE);

 end;

begin

AGE:=AGE_CALC(:DOB);

DBMS_OUTPUT.PUT_LINE('AGE IS ' || ROUND(AGE,0)||' YEARS
'||ROUND(((AGE-ROUND(AGE,0))*365),0)||' DAYS');

END;

38 | P a g e

TRIGGERS

CREATE OR REPLACE TRIGGER AGE

AFTER INSERT OR DELETE OR UPDATE ON ARTIST

FOR EACH ROW

BEGIN

 IF INSERTING THEN

 DBMS_OUTPUT.PUT_LINE('INSERTING');

 ELSIF DELETING THEN

 DBMS_OUTPUT.PUT_LINE('DELETING');

 ELSIF UPDATING THEN

 DBMS_OUTPUT.PUT_LINE('UPDATING');

 END IF;

END;

/

CREATE OR REPLACE TRIGGER AWARD

AFTER INSERT OR DELETE OR UPDATE ON AWARD

FOR EACH ROW

BEGIN

 IF INSERTING THEN

 DBMS_OUTPUT.PUT_LINE('INSERTING');

 ELSIF DELETING THEN

 DBMS_OUTPUT.PUT_LINE('DELETING');

 ELSIF UPDATING THEN

 DBMS_OUTPUT.PUT_LINE('UPDATING');

 END IF;

END;

/

39 | P a g e

CREATE OR REPLACE TRIGGER ALBUM

AFTER INSERT OR DELETE OR UPDATE ON ALBUM

FOR EACH ROW

BEGIN

 IF INSERTING THEN

 DBMS_OUTPUT.PUT_LINE('INSERTING');

 ELSIF DELETING THEN

 DBMS_OUTPUT.PUT_LINE('DELETING');

 ELSIF UPDATING THEN

 DBMS_OUTPUT.PUT_LINE('UPDATING');

 END IF;

END;

/

CREATE OR REPLACE TRIGGER TRACK

AFTER INSERT OR DELETE OR UPDATE ON TRACK

FOR EACH ROW

BEGIN

 IF INSERTING THEN

 DBMS_OUTPUT.PUT_LINE('INSERTING');

 ELSIF DELETING THEN

 DBMS_OUTPUT.PUT_LINE('DELETING');

 ELSIF UPDATING THEN

 DBMS_OUTPUT.PUT_LINE('UPDATING');

 END IF;

END;

/

CREATE OR REPLACE TRIGGER R_B

40 | P a g e

AFTER INSERT OR DELETE OR UPDATE ON RECEIVED_BY

FOR EACH ROW

BEGIN

 IF INSERTING THEN

 DBMS_OUTPUT.PUT_LINE('INSERTING');

 ELSIF DELETING THEN

 DBMS_OUTPUT.PUT_LINE('DELETING');

 ELSIF UPDATING THEN

 DBMS_OUTPUT.PUT_LINE('UPDATING');

 END IF;

END;

/

41 | P a g e

 THE END

